Teorija in praksa urejanja prostora | Številka 12 | Leto 2024 | ISSN 2350-3637
Tomaž Berčič:
Proces postopnih sprememb: Oblikovna slovnica v parametričnih orodjih
DOI 10.15292/IU-CG.2024.12.046-054 |
UDK 72:004.925.8:37.091.3 |
POSLANO: 10/2024 |
PREGLEDANO: 11/2024 |
OBJAVLJENO: 12/2024
Organizacija: Univerza v Ljubljani, Fakulteta za arhitekturo, Slovenija
POVZETEK
Metodologija oblikovne slovnice je učinkovito orodje za študente in strokovnjake v oblikovalskih disciplinah. Ta članek prikazuje integracijo oblikovne slovnice s sodobnimi parametričnimi orodji, pri čemer se zavestno izogiba uporabi namenske programske opreme, da bi omogočil rabo oblikovnih slovnic v praksi.
Glavni cilj raziskave je razširiti vedenje o praktičnih koristih oblikovne slovnice v izobraževalnem in profesionalnem okolju ter raziskati načine njene implementacije, ki izboljšujejo uporabniško izkušnjo in integracijo. Obstoječa orodja - interpretatorji za oblikovno slovnico pogosto niso dovolj uporabna zaradi slabe integracije z uveljavljenimi programskimi platformami. Raziskava prikazuje, kako lahko oblikovno slovnico učinkovito vključimo v parametrično programsko okolje, kot je Rhinoceros 3D, s pomočjo razširitve Grasshopper.
Ta pristop sicer ni nujno preprostejši od namenskih interpretatorjev, vendar dokazuje njegovo izvedljivost v poznanem parametričnem oblikovalskem okolju. Študija vključuje šest primerov uporabe oblikovne slovnice v Rhinoceros 3D z razširitvijo Grasshopper. Rezultati kažejo, da je metodologijo oblikovne slovnice mogoče brez težav prilagoditi standardnim orodjem, saj omogoča intuitivno oblikovanje množice variant, prilagajanje pravil in učinkovito vrednotenje rešitev.
Berčič, T. (2024). Proces postopnih sprememb: Oblikovna slovnica v parametričnih orodjih. Igra ustvarjalnosti - Creativity Game, (12), 46-54. https://doi.org/10.15292/IU-CG.2024.12.046-054
VIRI IN LITERATURA:
Ažman Momirski, L. (2018). Negotiating dynamic variables in urban regeneration process: A case study of the degraded Kranj railway station area. Prostor, 26(1 (55)), 156–169. https://doi.org/10.31522/p.26.1(55).12 Beirão, J., & Duarte, J. P. (2018). Generic grammars for design domains. AI EDAM, 32(2), 225–239.
Bercic, T., Bohanec, M., & Ažman Momirski, L. (2018). Role of decision models in the evaluation of spatial design solutions. Annales: Anali za istrske in mediteranske študije – Series Historia et Sociologia, 28(3), 621–636.
Berčič, T. (2021). Vrednotenje prostorskih rešitev z večparametrskimi modeli = Evaluation of spatial solutions through multiparametric models [[T. Berčič]]. https://repozitorij.uni-lj.si/IzpisGradiva.php?id=137203
Berčič, T., Bohanec, M., & Ažman Momirski, L. (2024). Integrating multi-criteria decision models in smart urban planning: A case study of architectural and urban design competitions. Smart Cities, 7(2), 786–805. https://doi.org/10.3390/smartcities7020033 Cuff, D. (2001). Digital pedagogy: An essay. Architectural Record, (9), 200–204.
Čok, G. (2014). Residential buildings and sustainable development in Slovenia = Stambene zgrade i održivi razvoj u Sloveniji. Prostor – znanstveni časopis za arhitekturu i urbanizam, 1(47), 134–147.
Duarte, J. P. (2001). Customising mass housing: A discursive grammar for Siza's Malagueira houses [Doctoral dissertation, Massachusetts Institute of Technology].
Duarte, J. P. (2005). A discursive grammar for customising mass housing: The case of Siza's houses at Malagueira. Automation in Construction, 14(2), 265–275.
Duarte, J. P., & Beirão, J. (2011). Towards a methodology for flexible urban design: designing with urban patterns and shape grammars. Environment and Planning B: planning and design, 38(5), 879-902.
Fleisher, A. (1992). Grammatical architecture? Environment and Planning B: Planning and Design, 19, 221–226.
Food4Rhino1. (2019). RUPA (Shape Grammar Design Assistant). [Online]. Available at: https://www.food4rhino.com/app/rupa-shape-grammar-design-assistant [Accessed 16 Oct. 2019].
Food4Rhino2. (2019). SortalGI Shape Grammar Interpreter. [Online]. Available at: https://www.food4rhino.com/app/sortalgi-shape-grammar-interpreter [Accessed 16 Oct. 2019].
Food4Rhino3. (2019). Anemone. [Online]. Available at: https://www.food4rhino.com/app/anemone [Accessed 16 Oct. 2019].
Food4Rhino4. (2019). Hoopsnake. [Online]. Available at: https://www.food4rhino.com/app/hoopsnake [Accessed 16 Oct. 2019].
Garcia, S. (2016). Classifications of shape grammars. In Proceedings of the Design Computing and Cognition conference, DCC 2016 (pp. 259–278). Chicago, United States.
Garcia, S., & Menezes Leitão, A. (2018). Shape grammars as design tools: An implementation of a multipurpose chair grammar. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 32(2), 240–255. https://doi.org/10.1017/s0890060417000610 Goh, E., Gallo, R., Hom, J., Strong, E., Weng, Y., Kerman, H., Cool, J. A., Kanjee, Z., Parsons, A. S., Ahuja, N., Horvitz, E., Yang, D., Milstein, A., Olson, A. P. J., Rodman, A., & Chen, J. H. (2024). Large language model influence on diagnostic reasoning: A randomized clinical trial. JAMA Network Open, 7(10), e2440969.
Grasl, T., & Economou, A. (2018). From shapes to topologies and back: An introduction to a general parametric shape grammar interpreter. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 32(2), 208–224. https://doi.org/10.1017/s0890060417000506 Hong, T. C. K., & Economou, A. (2023). Implementation of shape embedding in 2D CAD systems. Automation in Construction, 146, 104640. https://doi.org/10.1016/j.autcon.2022.104640 Hudson, R. (2010). Strategies for parametric design in architecture: An application of practice-led research [Doctoral dissertation, University of Bath].
Kahneman, D. (2011). Thinking fast and slow. Farrar, Straus and Giroux.
Knight, T. (2000). Shape grammars in education and practice: History and prospects. International Journal of Design Computing, 2(67).
Knight, T., & Stiny, G. (2001). Classical and non-classical computation. Arq: Architectural Research Quarterly, 5(4), 355–372.
Koning, H., & Eisenberg, J. (1981). The language of the prairie: Frank Lloyd Wright's prairie houses. Environment and Planning B, 8, 295–323.
Lauzzana, R. G., & Pocock-Williams, L. (1988). A rule system for analysis in the visual arts. Leonardo, 21(4), 445–452. https://doi.org/10.2307/1578709 Leitão, A., Santos, L., & Lopes, J. (2012). Programming languages for generative design: A comparative study. International Journal of Architectural Computing, 10(1), 139–162.
McKay, A., Chase, S., Shea, K., & Chau, H. H. (2012). Spatial grammar implementation: From theory to usable software. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 26, 143–159. https://doi.org/10.1017/S0890060412000042 Oxman, R. (2004). Think-Maps: Teaching design thinking in design education. Design Studies, 25(1), 63–91.
Oxman, R. (Ed.). (2006). Digital design [Special issue]. Design Studies, 27(3).
Stiny, G. (1980a). Introduction to shape and shape grammars. Environment and Planning B, 7, 343–351.
Stiny, G. (1980b). Kindergarten grammars: Designing with Froebel's building gifts. Environment and Planning a 125–135.
Stiny, G. (2006). Shape: Talking about seeing and doing. MIT Press.
Stiny, G., & Gips, J. (1972). Shape grammar and the generative specification of painting and sculpture. In C. V. Freiman (Ed.), Information Processing 71 (pp. 1460–1465). North-Holland.
Mitchell, W., & Stiny, G. (1978). The palladian grammar. Environment and Planning B, 5, 5-18.
Stiny, G., & Mitchell, W. J. (1980). The grammar of paradise: On the generation of Mughul gardens. Environment and Planning B, 7, 209–226.
Tapia, M. (1999). A visual implementation of a shape grammar system. Environment and Planning B: Planning and Design, 26(1), 59–73.
Verovsek, S., Juvancic, M., & Zupancic, T. (2013). Understanding and interpreting urban space (in)formation. International Journal of Architectural Computing, 11(2), 135–155. https://doi.org/10.1260/1478-0771.11.2.135