Theory and Practice of Spatial Planning | Number 6 | Year 2018 | ISSN 2350-3637

Martina Zbašnik-Senegačnik

The Impacts of Interior Space on Children in Schools and Kindergartens

DOI 10.15292/IU-CG.2018.082-089 | UDK 747:378 | SUBMITTED: 10/2018 | REVISED: 11/2018 | PUBLISHED: 11/2018
Author's affiliation: University of Ljubljana, Faculty of Architecture, Slovenia

Studies, as well as experience, show that learning space plays an important part in children’s education. The experts believe it has the role of the third teacher, which is an important and responsible role. This article stresses the importance of constructed learning space and focuses on physical parameters providing residential comfort – heat comfort, light comfort, acoustic comfort and the air quality of internal spaces. The assessed parameters of comfort have been gaining importance in the last ten years based on numerous studies proving their significance and particularly revealing the negative impact on children’s health and wellbeing, but also their school success and progress. On the long path of education from kindergarten to university, a child spends a significant amount of time in school, therefore the negative potential of constructed environment should not be overlooked. The architect is the designer of the space and therefore has an influence on the quality of the constructed environment in the early stages of planning – the functional design of the building structure has to provide daylight and at the same time prevent the space from overheating, it has to provide acoustic comfort, the selected materials of the building’s envelope and furniture must not emit harmful substances, and the inbuilt technological systems have to provide an adequate temperature regulating and continuous air exchange.

schools, negative environmental impacts on children’s health, thermal comfort, light comfort, acoustic comfort, interior air quality


Zbašnik-Senegačnik, M. (2018). The Impacts of Interior Space on Children in Schools and Kindergartens. Igra Ustvarjalnosti - Creativity Game, 6/2018, 82-89.

Åhlander, L. V., Rydell, R., Löfqvist, A. (2011). Speaker’s comfort in teaching environments. Voice problems in Swedish teaching staff. Journal of Voice, 25 (4), 430–440.
Al-Khatatbeh, B.J., Ma'bdeh, S.N. (2017). Improving visual comfort and energy efficiency in existing classrooms using passive daylighting techniques. Energy Procedia 136, 102-108.
ASHRAE, Indoor Air Quality Guide. Pridobljeno september 2018 s spletne strani:
Astolfi, A., Pellerey, F. (2008). Subjective and objective assessment of acoustical and overall environmental quality in secondary school classrooms. The Journal of the Acoustical Society of America, 123, 163–173.
Bakó-Biró, Z., Clements-Croome, D.J., Kochhar, N., Awbi, H.B., Williams, M.J. (2012). Ventilation rates in schools and pupils' performance, Building and Environment, 48, 215-223.
Bradley, J.S., Sato, H. (2008). The intelligibility of speech in elementary school classrooms. The Journal of the Acoustical Society of America 123, 2078-2086.
CIBSE. (2004). Code for lighting. London: CIBSE.
Daisey, J., Angell, W., Apte, M., (2003). Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information, Indoor Air 13 (1), 53-64.
Dockrell, J.E., Shield, B. (2004). Children’s perceptions of their acoustic environment at school and at home. The Journal of the Acoustical Society of America 115:2964–2973.
EPA (Environmental Protection Agency). Pridobljeno september 2018 s spletne strani:
Ervasti, J., Kivimäki, M., Kawachi, I., Subramanian, S., Pentti, J., Oksanen, T., Puusniekka, R., Pohjonen, T., Vahtera, J., Virtanen, M. (2012). School Environment as Predictor of Teacher Sick Leave: Data-linked Prospective Cohort Study. BMC Public Health 12, 770.
Fisher, R. S., Harding, G., Erba, G., Barkley, G. L., & WiIkins, A. (2005). Photic- and pattern-induced seizures: a review for the epilepsy foundation of America working group. Epilepsia, 46(9), 1426–1441.
Gao, J., Wargocki, P., Wang, Y. (2014).Ventilation system type, classroom environmental quality and pupils' perceptions and symptoms, Building and Environment, 75, 46-57.
Golshan, M., Thoen, H., Zeiler, W. (2018). Dutch sustainable schools towards energy positive. Journal of Building Engineering, 19, 161-171.
Harle, D. E., Shepherd, A. J., & Evans, B. J. W. (2006). Visual stimuli are common triggers of migraine and are associated with pattern glare. Headache, 46, 1431–1440.
Haverinen-Shaughnessy, U., Moschandreas, D.J., Shaughnessy, R.J. (2011). Association between substandard classroom ventilation rates and students' academic achievement, Indoor Air 21 (2), 121-131.
Klatte, M., Lachmann, T., Meis, M. (2010). Effects of noise and reverberation on speech perception and listening comprehension of children and adults in a classroomlike setting. Noise & Health 12, 270–82.
Konis, K., (2017). A novel circadian daylight metric for building design and evaluation. Building and Environment 113, 22-38.
Küller, R., & Laike, T. (1998). The impact of flicker from fluorescent lighting on wellbeing, performance and physiological arousal. Ergonomics, 41(4), 433–447.
Leinonen, J., & Venninen, T. (2012). Designing learning experiences together with children. Procedia-Social and Behavioral Sciences, (ajE-Bs) 45, 466-474.
Mendell , M. J., Heath, G.A. (2005). Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air, 15, 27-52.
Menezes, A. C., Cripps, A., Bouchlaghem, D., Buswell, R. (2012). Predicted vs. actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap. Applied Energy, 97, 355-364.
Neuman, A.C., Wroblewski, M., Hajicek, J., Rubinstein, A. (2010). Combined effects of noise and reverberation on speech recognition performance of normal-hearing children and adults. Ear and Hearing, 31 (3), 336–44.
Mohidin, H. H. B., Ismail, A. S., Ramli, H. B. (2015). Effectiveness of Kindergarten Design in Malaysia. Procedia - Social and Behavioral Sciences 202, 47 – 57.
Peng, J., Wang., D., Lau, S.-K., Yan, N., Jiang, P., Wu, S. (2015). An investigation of acoustic treatment for children in a classroom of an elementary school. Applied Acoustics 89, 42–45.
Piaget, J., & Inhelder, B. (2013). Child's Conception of Space: Selected Works. (Vol 4). New York: Routledge.
Rijal, H.B, Tuohy, P., Humphreys, M.A., Nicol. J.F., Samuel, A., Clarke, J. (2007). Using results from field surveys to predict the effect of open windows on thermal comfort and energy use in buildings. Energy and Buildings 39, 823–836.
Sala, E., Rantala, L. (2016). Acoustics and activity noise in school classrooms in Finland. Applied Acoustics 114, 252–259.
Schreiber, M. E. (1996). Lighting alternatives: considerations for child care centres. Young Children, 51 (4), 11–13.
Simoni, M., Annesi-Maesano, I., Sigsgaard, T., Norbäck, D., Wieslander, G., Nystad, W., Canciani, M., Sestini, P., Viegi G. (2010). School air quality related to dry cough, rhinitis and nasal patency in children, European Respiratory Journal, 35 (4), 742-749.
Slater, A. I., Perry, M. J., & Carter, D. J. (1993). Illuminance differences between desks:limits of acceptability. Lighting Research and Technology, 25, 91–103.
Stansfeld, S.A., Berglund, B., Clark, C., Fischer, IL.-B., Öhrström, E., Haines, M.M., et al. (2005). Aircraft and road traffic noise and children’s cognition and health: a cross–national study. The Lancet, 365 (9474), 1942–1949.
Sundell, J., Levin, H., Nazaroff, W. W., Cain, W. S., Fisk, W. J., Grimsrud, D. T., Gyntelberg, F., Li, Y., Persily, A. K., Pickering, A. C., Samet, J. M., Spengler, J. D., Taylor, S. T., Weschler, C. J. (2011). Ventilation rates and health: multidisciplinary review of the scientific literature. Indoor Air, 21 (3), 191 -204.
Španinger, K., Košir, R., Fink, M., Debeljak, N., Rozman, D. (2009). Cirkadiani ritem pri ljudeh. Zdravniški vestnik, 78, 651-657.
Toftum, J., Kjeldsen, B.U, Wargocki, P., Menå, H.R., Hansen, E.M.N., Clausen, G. (2015). Association between classroom ventilation mode and learning outcome in Danish schools, Building and Environment, 92, 494-503.
Treichel-Arehart, J. (1974). School lights and problem pupils. Science News, 105(16), 258–259.
Verriele, M., Schoemaecker, C., Hanoune, B., Leclerc, N., Germain, S., Gaudion, V, Locoge, N. (2016). The MERMAID study : indoor and outdoor average pollutant concentration in 10 low-energy school buildings in France. Indoor Air 26 (5), 702-713.
Wargocki, P., Wyon, D. P. (2017). Ten questions concerning thermal and indoor air quality effects on the performance of office work and schoolwork. Building and Environment 112, 359-366.
Wargocki, P., Wyon, D.P. (2007a) The effects of outdoor air supply rate and supply air filter condition in classrooms on the performance of schoolwork by children (1257-RP), HVAC&R Research, 13 (2) 165-191.
Wargocki, P., Wyon, D.P. (2007b) The effects of outdoor air supply rate and supply air filter condition in classrooms on the performance of schoolwork by children (1257-RP), HVAC&R Research, 13 (2) 193-220.
Winterbottom, M., Wilkins, A. (2009). Lighting and discomfort in the classroom. Journal of Environmental Psychology 29, 63–75.
Woolner, P., Hall, E., Higgins, S., McCaughey, C., & Wall, K. (2007). A sound foundation? What we know about the impact of environments on learning and the implications for Building Schools for the Future. Oxford Review of Education, 33(1), 47–70.
Yang, B., Olofsson, T., Wang, F., Lu W. (2018). Thermal comfort in primary school classrooms: A case study under subarctic climate area of Sweden. Building and Environment 135, 237–245.
Yener, A.K. (2011). Daylight analysis in classrooms with solar control. Architectural Science Review 45 (4), 311-316.
Zbašnik-Senegačnik, M. (1996). Negativni vplivi gradiv na človeka in okolje : doktorska disertacija. Ljubljana: Univerza v Ljubljani, Fakulteta za arhitekturo.