CREATIVITY GAME


Theory and Practice of Spatial Planning | 5 | 2017 | ISSN 2350-3637

Alen Mangafić1, Mitja Košir2, Alma Zavodnik Lamovšek2:

Determination of Solar Irradiation in Urban Areas with an Open Source GIS Model: Application on the Example of the Rožna dolina in Ljubljana, Slovenia

Creative Commons License DOI 10.15292/IU-CG.2017.05.068-075 | UDK 711.4 : 502.21 | SUBMITTED: 9/2017 | REVISED: 10/2017 | PUBLISHED: 11/2017
Author's affiliation: 1 Ljubljana, Slovenia, 2 University of Ljubljana, Faculty of Civil and Geodetic Engineering, Slovenia



ABSTRACT
The determination of solar irradiation is crucial when planning the installation of solar systems. There are different GIS models for determining solar irradiation, which differ from each other in terms of input data, hardware requirements, performance, reliability and suitability, depending on the specificity of the study area and the nature of the study. Because of their diversity, urban areas pose a greater challenge for the estimation of the potential of the received solar energy. In the article we offered a methodology for determining the irradiation of urban area roofs using the GRASS GIS model r.sun, which makes the computation with high resolution spatial, atmospheric and meteorological data. The used input data is freely available for the entire territory of Slovenia. The proposed methodological approach was tested in the area of the town quarter Rožna dolina with the northern part of Vič. The area is very diverse according to the typology of the built objects, the land cover and altitude differences.

KEYWORDS
solar irradiation, GIS, r.sun, lidar, Copernicus, Molusce

FULL ARTICLE
https://www.iu-cg.org/paper/2017/IU_CG_05-2017_mangafic.pdf (2.32 MB)

CITATION
Mangafić, A., Košir, M., Zavodnik Lamovšek, A. (2017). Determination of Solar Irradiation in Urban Areas with an Open Source GIS Model: Application on the Example of the Rožna dolina in Ljubljana, Slovenia. Igra ustvarjalnosti - Creativity Game, (5), 68-75. https://doi.org/10.15292/IU-CG.2017.05.068-075

Copy citation to clipboard (APA style)

LITERATURE AND SOURCES:
ARSO. (2004): Trajanje sončnega obsevanja.
ARSO (2017). Pridobljeno 1.6.2017s spletne strani: http://evode.arso.gov.si/indexd697.html.
Electricity Map. (2017). Pridobljeno 30.6.2017 s spletne strani: https://www.electricitymap.org/?wind=false&solar=false&page=country&countryCode=SI.
ESRA. (2000): The European Solar radiation Atlas; Vol. 1: Fundamentals and maps. Pariz, Les Presses de l’École des Mines. Str. 27
ESRI: Area Solar Radiation. Pridobljeno 30. 6. 2017 s spletne strani: http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/area-solar-radiation.htm.
Glojek K. in Ogrin M. (2015): Kakovost zraka v Sloveniji v obdobju 2003–2013 z vidika prometnega onesnaževanja. Ljubljana, CIPRA Slovenija.
Google Project Sunroof. (2017). Pridobljeno 31.10.2017 s spletne strani: https://www.google.com/get/sunroof/data-explorer/data-explorer-methodology.pdf.
Hočevar, A.,Rakovec, J. (1975). Razprave – Papers XVIII. Raziskovalno poročilo. Ljubljana, Društvo meteorologov Slovenije.
Hofierka J. in Šúri M. (2002): The solar radiation modfel for Open source GIS: implementation and applications. Trento, Proceedings of the Open Source GIS-GRASS Users Conference.
Kammen, M. Daniel et.al. (2016): City-integrated renewable energy for urban sustainability. Science 352 ( Vol. 6228): Urban planet. American Association fort he Advacement of Science.
Lucca S., Valentini, L. (2017). Solar Lab. Divison of geomatics. Instituto SWcienze della Terra – SUPSI. Pridobljeno 1. 6. 2017 s spletne strani: http://istgeo.ist.supsi.ch/site/?q=node/3.
Ogrin, M., Vintar Mally, K. et.al. (2014). Onesnaženost zraka v Ljubljani. Koncentracije dušikovih oksidov, ozona, benzena in črnega ogljika v letih 2013 in 2014. Ljubljana , Narodna in univerzitetna knjižnica.
Nationalmap. (2017). Pridobljeno 1. 10. 2017 s spletne strani: https://nationalmap.gov/3DEP/.
Nguyen, H.T., Pearce, J.M. (2009). Estimating potential photovoltaic yield with r.sunand the open source Geographical Resources Analysis Support System. Solar Energy,Vol 84, 5. Elsevier. https://doi.org/10.1016/j.solener.2010.02.009.
NREL. (2017). Pridobljeno 31. 10. 2017 s spletne strani: http://pvwatts.nrel.gov/pvwatts.php.
Percival, A.M., Clesceri, N.L. (2003). Waste Sites as Biological Reactors: Characteriyation and Modelling. Boca Raton, Lewis Publishers, CRC Press LLC. str. 212-214
PVGIS. Pridobljeno 31. 10. 2017 s spletne strani: http://re.jrc.ec.europa.eu/pvgis/.
PVGIS. (2013). Pridobljeno 31. 10. 2017s spletne strani: https://ec.europa.eu/jrc/sites/jrcsh/files/20130626-esti-pvgis.pdf.
PVGIS calculator. Pridobljeno 31. 10. 2017 s spletne strani: http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php.
PVWATTS. Pridobljeno 31. 10. 2017 s spletne strani: http://pvwatts.nrel.gov/.
Reda, I., Afshin A. (2008): Solar Position Algorithm for Solar Radiation Applications. Colorado, National Renewable Energy Laboratory
Slovenski portal za fotovoltaiko. (2017). Pridobljeno s spletne strani 30.6.2017: http://pv.fe.uni-lj.si/CalcObs.aspx.
Solar radiation data (SoDa). (2017). Pridobljeno s spletne strani 1. 6. 2017: http://www.soda-pro.com/help/general-knowledge/linke-turbidity-factor.
Solargis. Pridobljeno 30. 6. 2017 s spletne strani: http://solargis.com/support/methodology/solar-radiation-modeling/.
SURS. (2017). Povprečna cena energentov, 1. četrtletje 2017. Pridobljeno 30. 7. 2017 s spletne strani: http://www.stat.si/StatWeb/Field/Index/30.
Wolfram Alpha. Pridobljeno 30. 6. 2017 s spletne strani: https://www.wolframalpha.com/input/?i=sun+declination+january+17th.