ABSTRACT
The built environment has a very high impact on the environment. Architects can largely define the environmental impact a building will cause throughout its lifetime through its design. Especially the choice of material and the type of construction can be influenced in early design stages. To quantify the environmental impact, tools for Life Cycle Assessment (LCA) are used. This paper discusses the results of four case studies of applying four different novel LCA tools in four different academic courses at different universities. The results show that the success of applying LCA tools highly depends on the point of time during the design process and the design strategy the student pursues. If the right tool is used at the right moment and matches the design strategy, it can help to improve the architectural quality and reduce environmental impacts. In most cases however, the time of application did not fit, resulting in additional effort for applying the LCA tool. In consequence, the architectural elaboration of the design and the improvement of environmental performance compete against each other. Either the architectural quality suffers or the tool is employed late and the environmental performance cannot be improved. Even if the point in time of the tool application is right, the success depends highly on the design strategy. The number of tools is growing and there is an adequate tool available for each design stage. The design strategy has to match the tool and this requires a willingness to adapt the design approach. The issue of environmental design shifted from a lack of adequate tools to the lack of adequate design approaches. Tools can be easily taught in seminars. Environmental design strategies, however, have to be included in design studios and developed throughout the entire design phase to become part of architectural education.
Hollberg, A., Habert, G., Schwan, P., Hildebrand, L. (2017). Potential and limitations of environmental design with LCA tools. Igra ustvarjalnosti - Creativity Game, (5), 34-45. https://doi.org/10.15292/IU-CG.2017.05.034-045
LITERATURE AND SOURCES:
Baunetz. (2016). Temporäres Restaurant in Weimar. Retrieved December 12, 2017, from http://www.baunetz.de/meldungen/Meldungen-Temporaeres_Restaurant_in_Weimar_3933881.html
BBSR. (2016). ökobau.dat. Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit. Retrieved from http://oekobaudat.de/
DIN. (2008). DIN 276-1: Kosten im Bauwesen. Deutsches Institut für Normung e.V.
DIN. (2011). DIN V 18599-2:2011 Energetische Bewertung von Gebäuden - Berechnung des Nutz-, End- und Primärenergiebedarfs für Heizung, Kühlung, Lüftung, Trinkwasser und Beleuchtung - Teil 2: Nutzenergiebedarf für Heizen und Kühlen von Gebäudezonen. Deutsches Institut für Normung e.v.
DOE. (2015). EnergyPlus V8.3. Retrieved October 10, 2017, from https://energyplus.net/
El Khouli, S., John, V., & Zeumer, M. (2014). Nachhaltig Konstruieren (Detail Gre). Institut für Internationale Architektur-Dokumentation.
German Sustainable Building Council. (2015). DGNB system. Retrieved October 10, 2017, from http://www.dgnb-system.de/en/
Hegger, M., Fuchs, M., Stark, T., & Zeumer, M. (2007). Energie Atlas: Nachhaltige Architektur. Birkhäuser.
Heidenreich, C., & Schütz, S. (2010). Screenhaus.SOLAR - Ein Kino im Solarkleid. Bauhaus-Universitätsverlag.
Hollberg, A. (2016). Parametric Life Cycle Assessment - Introducing a time-efficient method for environmental building design optimization. (bauhaus.ifex, Ed.). Bauhaus-Universitätsverlag.
Hollberg, A., Ebert, M., Schütz, S., Cicek, B., Gumpp, R., & Ruth, J. (2016). Application of a parametric real-time LCA tool in students’ design projects. In Sustainable Built Environment (pp. 72–81). Hamburg.
Hollberg, A., Lichtenheld, T., Klüber, N., & Ruth, J. (2017). Parametric real-time energy analysis in early design stages: a method for residential buildings in Germany. Energy, Ecology and Environment. https://doi.org/10.1007/s40974-017-0056-9
Hollberg, A., & Ruth, J. (2016). LCA in architectural design—a parametric approach. The International Journal of Life Cycle Assessment, 21(7), 943–960. https://doi.org/10.1007/s11367-016-1065-1
Klöpffer, W., & Grahl, B. (2014). Life Cycle Assessment (LCA) - A guide to best practise. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
Köhler, M. (2016). Rhinos, Hoppers, CAD-Monkeys. Competition Online, 85–90. Retrieved from https://www.competitionline.com/de/magazin
Kvan, T., & Yunyan, J. (2005). Students’ learning styles and their correlation with performance in architectural design studio. Design Studies, 26(1), 19–34. https://doi.org/10.1016/j.destud.2004.06.004
Passer, A., Lasvaux, S., Allacker, K., De Lathauwer, D., Spirinckx, C., Wittstock, B., ... Wallbaum, H. (2015). Environmental product declarations entering the building sector: critical reflections based on 5 to 10 years experience in different European countries. The International Journal of Life Cycle Assessment, 20(9), 1199–1212. https://doi.org/10.1007/s11367-015-0926-3
Paulson Jr., B. C. (1976). Designing to Reduce Construction Costs. Journal of the Construction Division, 102(4), 587–592.
RIBA. (2013). RIBA Plan of Work 2013: Consultation document.
Schneider, C. (2011). Steuerung der Nachhaltigkeit im Planungs- und Realisierungsprozess von Büro- und Verwaltungsgebäuden.
Suau, C. (2013). Minimum Game Plans: Eco-Design and Low-Tech Fabrication in Studios. Igra Ustvarjalnosti - Creativity Game, 2013(1), 034–039. https://doi.org/10.15292/IU-CG.2013.01.034-039
UNEP SBCI. (2009). Buildings and Climate Change Summary for Decision-Makers.
designbuildxchange. (2016). Recycling Mies
Haas, S., & Asam, C. (2014). Wecobis- Ökologische Baustoffinformationssystem