ABSTRACT
With decreasing energy demand, the ecological impact related to the building fabric becomes more relevant and climate goals can only be reached when considering both. In the last decades, political regulation and standards were released to promote the reduced consumption of primary resources. Architects and planners approached this topic with different strategies by working with reused building elements, developing new products or using types of connection which provide easy disassembly in the future. In the last decade, the instruments to quantify the ecological impact advanced from life cycle assessment (LCA) data in spreadsheets to tools which connect ecological data with building volume and self-optimizing solutions. The treatment of the building materials after the use phase is subject to speculations as framework conditions in the future will develop. Today deconstruction (in difference to demolition) is rarely executed and research is limited. Construction and material choice impact the environmental qualities by the energy and emissions related to the production and the treatment scenario at the end of life. Against this uncertain background, a method is needed to indicate the environmental impact by evaluating the suitability for further use, like reuse or recycling. The paper introduces three approaches to indicate parameters available in the planning phase to possible treatment paths for the material after usage regarding practicability and reliability. The most sufficient method was integrated in an architectural drawing software and evaluated.
KEYWORDS deconstruction, design for disassembly, LCA, secondary resources, type of connection
Hildebrand, L., Schwan, P., Vollpracht, A., Brell-Cockan, S., Zabek, M. (2017). Methodology to evaluate building construction regarding the suitability for further application. Igra ustvarjalnosti - Creativity Game, (5), 20-32. https://doi.org/10.15292/IU-CG.2017.05.020-032
LITERATURE AND SOURCES:
Basten, M. (2015). Mineralische Bauabfälle Monitoring 2012- Bericht zum Aufkommen und zum Verbleib mineralischer Bauabfälle im Jahr 2012. Retrieved from Berlin: http://kreislaufwirtschaft-bau.de/Arge/Bericht-9.pdf
Brenner, V. (2010). Recyclinggerechtes Konstruieren- Konzepte für eine Abfallfreie Konstruktionsweise im Bauwesen. (Master), University of Stuttgart, Stuttgart.
Commission, E. (2013). Directive 2008/98/EC on waste (Waste Framework Directive) European Parliament and the Council of the European Union (Vol. 2008/98). Brussels: Official Journal of the European Union.
Dechantsreiter, U., Peter, H., Mettke, A., Asmus, S., Schmidt, S., Knappe, F., . . . Lau, J. J. (2015). Instrumente zur Wiederverwendung von Bauteilen und hochwertigen Verwertung von Baustoffen. Retrieved from Dessau: https://www.ifeu.de/abfallwirtschaft/pdf/texte_93_2015_wiederverwertung_von_bauteilen.pdf
Deilmann, C., Krauß, N., & Gruhler, K. (2014). Sensitivitätsstudie zum Kreislaufwirtschaftspotenzial im Hochbau. Retrieved from Dresden: https://www.ioer.de/fileadmin/internet/IOER_Projekte/PDF/FB_E/Endbericht_REP.pdf
DGNB. (2015). Rückbau und Recyclingfreundlichkeit DGNB Kriterium Tec1.6. Stuttgart: DGNB GmbH.
DIN. (2003). Manufacturing processes Terms and definitions, division (Vol. 8580). Berlin: Beuth.
DIN, N. B. i. (2012). Nachhaltigkeit von Bauwerken – Umweltproduktdeklarationen Grundregeln für die Produktkategorie Bauprodukte; Deutsche Fassung EN 15804:2012 (Vol. 15804:2012). Berlin: DIN Deutsches Institut für Normung e. V.
Durmisevic, E. (2006). Transformable Building Structures - Design for disassembly as a way to introduce sustainable engineering to building design & construction. (PhD), Technische Universiteit Delft, Delft.
Frischknecht, R. (2009). Umweltverträgliche Technologien: Analyse und Beurteilung- Teil 2: Ökobilanzen. Zürich
Hildebrand, L. (2014). Strategic investment of embodied energy during the architectural planning process. Delft University of Technology, Rotterdam.
Ingenieure, V. D. (1991). Konstruieren recyclinggerechter technischer Produkte: VDI Verlag.
Jäger, W., Masou, R., Bakeer, T., Ortlepp, S., Sobek, W., Haase, W., . . . Thümmler, T. (2013). Entwicklung der Grundprinzipien für voll rezyklierbare, modulare, massive Bauweisen in Breitenanwendung auf 0-Energiebasis. Retrieved from Stuttgart: https://www.irbnet.de/daten/rswb/13089005695.pdf
Kellenberger, D., & Althaus, H.-J. (2009). Relevance of simplifications in LCA of building components. Building and Environment, 44(4), 818-825. https://doi.org/10.1016/j.buildenv.2008.06.002
Motzko, C., Klingenberger, J., Wöltjen, J., & Löw, D. (2016). Bewertungsmatrix für die Kostenplanung beim Abbruch und Bauen im Bestand. Retrieved from Stuttgart: http://www.irbnet.de/daten/rswb/16019002126.pdf
Müller, A. (2011). Baustoffrecycling. Springer Verlag: Fachzeitschrift Österreichische Wasser- und Abfallwirtschaft, 11-12/2011.
Müller, A. (2016). Erschließung der Ressourceneffizienzpotenziale im Bereich der Kreislaufwirtschaft Bau. Retrieved from Weimar: http://www.bbsr.bund.de/BBSR/DE/FP/ZB/Auftragsforschung/2NachhaltigesBauenBauqualitaet/2016/ressourceneffizienzpotenziale/Endbericht.pdf?__blob=publicationFile&v=2
Nations, U. (2015). Transforming our world: The 2030 Agenda for sustainable development. Retrieved from New York: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf
Ortiz, O., Castells, F., & Sonnemann, G. (2009). Sustainability in the construction industry: A review of recent developments based on LCA. Construction and Building Materials, 23(1), 28-39. https://doi.org/10.1016/j.conbuildmat.2007.11.012
Parliament, E. (2010). Directive on the energy performance of building (Vol. 2010/31/EU). Brussels: European Parliament and European Council.
Rios, F. C., Chong, W. K., & Grau, D. (2015). Design for Disassembly and Deconstruction - Challenges and Opportunities. Procedia Engineering, 118(Supplement C), 1296-1304. https://doi.org/10.1016/j.proeng.2015.08.485
Sabaghi, M., Mascle, C., & Baptiste, P. (2016). Evaluation of products at design phase for an efficient disassembly at end-of-life. Journal of Cleaner Production, 116(Supplement C), 177-186. https://doi.org/10.1016/j.jclepro.2016.01.007
Schiller, G., Ortlepp, R., & Krauß, N. s. (2015). Kartierung des anthropogenen Lagers in Deutschland zur Optimierung der Sekundärrohstoffwirtschaft. Retrieved from Dessau Rößlau: https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/texte_83_2015_kartierung_des_anthropogenen_lagers.pdf
VDI. (2016). Resource efficiency Evaluation of the use of raw materials (Vol. 4800-2). Berlin: VDI.
WBGU, Schellenhuber, H. J., Messner, D., Kraas, F., Leggewie, C., Lemke, P., . . . Schneidewind, U. (2016). Der Umzug der Menschheit: Die transformative Kraft der Städte. Retrieved from Berlin: http://www.wbgu.de/fileadmin/templates/dateien/veroeffentlichungen/hauptgutachten/hg2016/wbgu_hg2016.pdf
Weimann, K., Matyschik, J., Adam, C., Schulz, T., Linß, E., & Müller, A. (2013). Optimierung des Rückbaus/Abbaus von Gebäuden zur Rückgewinnung und Aufbereitung von Baustoffen unter Schadstoffentfrachtung (insbes. Sulfat) des RC-Materials sowie ökobilanzieller Vergleich von Primär- und Sekundärrohstoffeinsatz inkl. Wiederverwertung. Retrieved from: https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/4430.pdf