Theory and Practice of Spatial Planning | Number 12 | Year 2024 | ISSN 2350-3637
Mara Vogrinec1, Simon Koblar2, Alenka Fikfak1, Janez P. Grom1:
From Analysis to Classification: Automation of Residential Building Classification Using GIS Tools
DOI 10.15292/IU-CG.2024.12.036-045 |
UDK 711.581:004:91(497.4) |
SUBMITTED: 11/2024 |
REVISED: 12/2024 |
PUBLISHED: 12/2024
Author's affiliation: 1 University of Ljubljana, Faculty of Architecture, Slovenia, 2 Urban Planning Institute of the Republic of Slovenia, Ljubljana, Slovenia
ABSTRACT
The research focuses on the development of a GIS analytical tool for the classification of residential buildings, designed to support spatial planning and urban analysis in Slovenia. Traditional spatial data analysis methods are time-consuming and often rely on manual procedures, limiting their efficiency and applicability for large-scale projects. Developed tool integrates morphological analysis within a GIS environment to enable the automated classification of buildings based on various typologies and patterns, representing a significant advancement in the automation and standardization of spatial data analysis.
The tool integrates data from the real estate cadastre with established rules from literature, allowing for consistent classification of buildings into detached and connected types, with further classification by typology and building pattern.
The development process utilized PostgreSQL with the PostGIS extension for data processing and QGIS for visualization, ensuring accessibility through open-source software. The tool was tested in three Slovenian cities - Maribor, Velenje, and Škofja Loka - where it proved to be reliable and adaptable to local conditions. Results show that the GIS tool simplifies the work of spatial planners and supports sustainable urban development, as it facilitates monitoring urban growth and adjusting spatial policies based on precise building data. The development of such tools in Slovenia offers significant potential, as it enhances existing spatial data and allows for future improvements.
KEYWORDS GIS, residential building typology, morphology, PostgreSQL, building cadastre, Slovenia
Vogrinec, M., Koblar, S., Fikfak, A., Grom, J. (2024). From Analysis to Classification: Automation of Residential Building Classification Using GIS Tools. Igra ustvarjalnosti - Creativity Game, (12), 36-45. https://doi.org/10.15292/IU-CG.2024.12.036-045
LITERATURE AND SOURCES:
Atwal, K. S., Anderson, T., Pfoser, D. in Züfle, A. (2022). Predicting building types using OpenStreetMap. Scientific Reports, 12(1), 19976. https://doi.org/10.1038/s41598-022-24263-w Azinović, D., Kregar, P., Marn, T., Sajovic, P. in Vujović, A. (2014). Tipologija večstanovanjskih stavb (J. Koželj, Ur.; 2. dopolnjena izd.). In obs medicus. Batty, M. in Longley, M. (1994). Fractal Cities - A Geometry of Form and Function. Academic Press, London.
Čerpes, I., Gregorčič, G. in Koželj, J. (2001). Urbanistično načrtovanje. Priporočila za urejanje naselij: zaključno poročilo o raziskovalni nalogi, 313–363.
Čerpes, I., Grohar, J., Perović, V. in Vidic, A. (2019). Tipologija stavb: priročnik (J. Červek, Ur.). Fakulteta za arhitekturo. https://www.gov.si/assets/ministrstva/MNVP/Dokumenti/Prostorski-red/Tipologija-stavb.pdf Dascalaki, E. G., Droutsa, K. G., Balaras, C. A. in Kontoyiannidis, S. (2011). Building typologies as a tool for assessing the energy performance of residential buildings – A case study for the Hellenic building stock. Energy and Buildings, 43(12), 3400–3409. https://doi.org/10.1016/j.enbuild.2011.09.002 Goodchild, M. (2009). Geographic information systems and science: Today and tomorrow. Procedia Earth and Planetary Science, 1, 1037–1043. https://doi.org/10.1016/j.proeps.2009.09.160 GURS (2024a). Kataster nepremičnin, 14. 07. 2024. Portal prostor. https://www.e-prostor.gov.si/podrocja/parcele-in-stavbe/kataster-nepremicnin/ GURS (2024b). Portal Prostor Geodetske uprave RS. https://www.e-prostor.gov.si/ Hecht, R. (2014). Automatische Klassifizierung von Gebäudegrundrissen: ein Beitrag zur kleinräumigen Beschreibung der Siedlungsstruktur (Let. 63). Rhombos-Verl.
Loga, T., Diefenbach, N., Stein, B., Dascalaki, E., Balaras, C., Droutsa, K., Kontoyiannidis, S., Zavrl, M., Rakušček, Z., Corrado, V., Corgnati, S., Ballarini, I., Roarty, C., Hanratty, M., Sheldrick, B., Van Holm, M., Renders, N., Popiołek, M., Kwiatkowski, J. in Jovanovic Popovic, M. (2012). Typology Approach for Building Stock Energy Assessment. Main Results of the TABULA project. https://doi.org/10.13140/RG.2.2.22343.57767 Meinel, G., Hecht, R. in Herold, H. (2009). Analyzing building stock using topographic maps and GIS. Building Research and Information - BUILDING RES INFORM, 37, 468–482. https://doi.org/10.1080/09613210903159833 Nicholson, M. (2021, maj 19). Why Accurate Data is Crucial for the Future of Smart Cities. VivaCity. https://vivacitylabs.com/why-accurate-data-is-crucial-for-the-future-of-smart-cities/ Tibermacine, I. in Zemmouri, N. (2017). Effects of building typology on energy consumption in hot and arid regions. Energy Procedia, 139, 664–669. https://doi.org/10.1016/j.egypro.2017.11.269 Vogrinec, M. (2024a). GIS orodje. https://github.com/mV-777/GIS_orodje (Original work published 2024)
Vogrinec, M. (2024b). Integracija analitičnih metod v GIS za klasifikacijo stanovanjskih stavb: Razvoj orodja. https://repozitorij.uni-lj.si/IzpisGradiva.php?id=164021&lang=slv